
Assume-Guarantee Testing

Colin Blundell
Dept. of Comp. and Inf. Science

University of Pennsylvania

Philadelphia, Pennsylvania USA

blundell@cis.upenn.edu

Dimitra Giannakopoulou
RIACS/NASA Ames

NASA Ames Research Center

Moffett Field, CA 94035-1000, USA

dimitra@email.arc.nasa.gov

Corina S. Păsăreanu
QSS/NASA Ames

NASA Ames Research Center

Moffett Field, CA 94035-1000, USA

pcorina@email.arc.nasa.gov

ABSTRACT
Verification techniques for component-based systems should
ideally be able to predict as many properties as possible of
the assembled system through local properties of the system
components. This paper introduces such a technique in the
context of testing. Assume-guarantee testing is based on
the (automated) decomposition of key system-level require-
ments into local component requirements at design time.
The latter are checked during testing of individual compo-
nents, and can thus uncover violations of system require-
ments before system assembly. Moreover, when a system
is assembled, we provide assume-guarantee techniques that
can efficiently predict, based on correct system runs, viola-
tions by alternative system runs. We discuss the application
of our approach to testing a multi-threaded NASA applica-
tion, where we treat threads as components.

Keywords
verification, testing, assume-guarantee reasoning, predictive
analysis

1. INTRODUCTION
As software systems continue to grow in size and complexity,
it is becoming common for developers to assemble them from
new or reused components potentially developed by different
parties. For these systems, it is important to have verifica-
tion techniques that are modular as well, since verification
is often the dominant cost in money and time. Developers
could use such techniques to avoid expensive whole-system
verification, instead performing verification primarily on in-
dividual components. Unfortunately, the task of extracting
useful results from verification of components in isolation
is often difficult: first, developing environments that will
appropriately exercise individual components is challenging
and time-consuming, and second, inferring system proper-
ties from results of local verification is typically non-trivial.
The growing popularity of component-based systems makes
it important for verification researchers to investigate these

challenges.

Assume-guarantee reasoning is a technique that has long
held promise for modular verification. This technique is
a “divide-and-conquer” approach that infers global system
properties by checking individual components in isolation [4,
12, 14, 16]. In its simplest form, it checks whether a com-
ponent M guarantees a property P when it is part of a
system that satisfies an assumption A, and checks that the
remaining components in the system (M ’s environment) sat-
isfy A; it can also be extended to deal with the verification
of multiple components and the use of assumptions for the
verification of each of those. In previous work, we devel-
oped techniques that automatically generate assumptions for
performing assume-guarantee model checking at the design
level [2, 5, 9].

Of course, verifying the design is not enough; we must also
verify that the implementation preserves the design’s cor-
rectness. For this purpose, we have also previously devel-
oped a methodology that uses the assumptions created at
the design level to model check source code in an assume-
guarantee style, as presented in [10]. Similarly to the design-
level verification, source code is thus also checked one com-
ponent at a time. Hence, this technique has potential to
meet the challenges of component-based verification.

Unfortunately, despite the increased scalability that one can
achieve by using assume-guarantee techniques in model check-
ing, it remains a difficult task in the hands of experts to make
the technique scale to the size of industrial systems. Fur-
thermore, model checkers do not exist for many industrial
programming languages. In this work, we explore the bene-
fits of assume-guarantee reasoning for testing, which is still
the predominant industrial verification technique. Assume-
guarantee testing uses design-level assumptions: — as test-
ing environments for individual system components, and —
to perform predictive analysis of the assembled system. We
believe that this approach enhances the testing process in
several ways:

1. Assumptions can provide appropriate testing environ-
ments. They restrict the context of the components, thus
reducing the number of false positives obtained by verifica-
tion (false positives are errors that will never exhibit them-
selves in the context of the particular system in which the
component will be introduced). Violations of system-level
properties can thus be detected during component testing.

This is desirable, as it is well established that errors discov-
ered earlier in the development phase are easier and cheaper
to fix. We realize that components must sometimes be thor-
oughly tested irrespective of their context, as is the case
for component libraries. However, it is equally important
to be able to customize the testing process when particular
assemblies are considered.

2. Assume-guarantee testing has the potential to obtain
system coverage through local testing. We apply assume-
guarantee reasoning to component testing-traces in order
to obtain similar guarantees on trace compositions as we
previously obtained on component compositions by using
assume-guarantee reasoning in the context of model check-
ing. Hence, we can infer that a (potentially large) set of
system traces satisfies a property by checking traces of com-
ponents in isolation against assume-guarantee pairs.

3. Assume-guarantee testing also has the potential to more
efficiently detect bugs and provide coverage during whole-
system testing, which will remain an important part of sys-
tem verification for the foreseeable future. Here, our tech-
nique is an efficient means of predictive testing, in which
the existence of bad traces is detected from a good trace.
Predictive testing exploits the insight that within a trace,
events known to be independent can be reordered to ob-
tain different legal traces. Typically, predictive testing tech-
niques discover these alternative interleavings by composing
independent events in different orders [18]; we use assume-
guarantee reasoning to obtain results about the alternative
interleavings without explicitly exploring them.

We experimented with our assume-guarantee testing frame-
work in the context of the Eagle runtime analysis tool [3],
and applied our approach to a NASA software system also
used in the demonstration of our design-level assume-guarantee
reasoning techniques. In the analysis of a specific property
(P) during these experiments, we found a discrepancy be-
tween one of the components and the design that it imple-
ments. This discrepancy does not cause the system to vio-
late P and would therefore not have been detected during
monolithic model checking of P .

The remainder of the paper is organized as follows. We
first provide some background in Section 2, followed by a
discussion of our assume-guarantee testing approach and its
advantages in Section 3. Section 4 describes the experience
and results obtained by the application of our techniques to
a NASA system. Finally, Section 5 presents related work
and Section 6 concludes the paper.

2. BACKGROUND
LTSs. At design level, we use Labeled Transition Systems
(LTSs) to model the behavior of communicating compo-
nents. Let Act be the universal set of observable actions and
let τ denote a local action unobservable to a component’s en-
vironment. An LTS M is a quadruple 〈Q, αM, δ, q0〉 where:

• Q is a non-empty finite set of states

• αM ⊆ Act is a finite set of observable actions called
the alphabet of M

• δ ⊆ Q × αM ∪ {τ} × Q is a transition relation

• q0 ∈ Q is the initial state

Let M = 〈Q, αM, δ, q0〉 and M ′ = 〈Q′, αM ′, δ′, q0′〉. We say

that M transits into M ′ with action a, denoted M
a−→ M ′,

if and only if (q0, a, q0′) ∈ δ and αM = αM ′ and δ = δ′.

Traces. A trace t of an LTS M is a sequence of observable
actions that M can perform starting at its initial state. For
Σ ⊆ Act, we use t�Σ to denote the trace obtained by remov-
ing from t all occurrences of actions a /∈ Σ. The set of all
traces of M is called the language of M , denoted L (M).

Let t = 〈a1, a2, . . . , an〉 be a finite trace of some LTS M .
We use [t] to denote the LTS Mt = 〈Q, αM, δ, q0〉 with Q =
{q0, q1, . . . , qn}, and δ = {(qi−1, ai, qi)}, where 1 ≤ i ≤ n.

Parallel Composition. The parallel composition oper-
ator ‖ is commutative and associative. It combines the
behavior of two components by synchronizing the actions
common to their alphabets and interleaving the remaining
actions. Formally, let M1 = 〈Q1, αM1, δ1, q01〉 and M2 =
〈Q2, αM2, δ2, q02〉 be two LTSs. Then M1 ‖ M2 is an LTS
M = 〈Q, αM, δ, q0〉, where Q = Q1 × Q2, q0 = (q01, q02),
αM = αM1 ∪ αM2, and δ is defined as follows, where a is
either an observable action or τ (note that the symmetric
rules are implied by the fact that the operator is commuta-
tive):

M1
a−→ M ′

1, a /∈ αM2

M1 ‖ M2
a−→ M ′

1 ‖ M2

M1
a−→ M ′

1, M2
a−→ M ′

2, a 	= τ

M1 ‖ M2
a−→ M ′

1 ‖ M ′
2

Properties and Satisfiability. A property is specified as
an LTS P , whose language L (P) defines the set of accept-
able behaviors over αP . An LTS M satisfies P , denoted as
M |= P , if and only if ∀t ∈ L (M).t�αP ∈ L (P).

Assume-guarantee Triples. In the assume-guarantee paradigm
a formula is a triple 〈A〉 M 〈P 〉, where M is a component,
P is a property and A is an assumption about M ’s envi-
ronment [16]. The formula is true if whenever M is part of
a system satisfying A, then the system guarantees P . At
design level in our framework, all of A, M, P are expressed
as LTSs.

Assume-guarantee Reasoning. Consider for simplicity
a system that is made up of components M1 and M2. The
aim of assume-guarantee reasoning is to establish M1 ‖
M2 |= P without composing M1 with M2. The simplest
assume-guarantee proof rule that can be used for this pur-
pose consists of showing that the following two premises
hold: 〈A〉 M1 〈P 〉 and 〈true〉 M2 〈A〉. From these, the rule
infers that 〈true〉 M1 ‖ M2 〈P 〉 also holds. Note that for
the use of this rule to be justified, the assumption must be
more abstract than M2, but still reflect M2’s behavior. Ad-
ditionally, an appropriate assumption for the rule needs to
be strong enough for M1 to satisfy P .

In previous work we developed frameworks that compute as-
sumptions automatically for finite-state models and safety
properties that are expressed in terms of LTSs. More specif-
ically, in [9] we present an approach to synthesizing the as-
sumption that a component needs to make about its en-
vironment for a given property to hold. The assumption
produced is the weakest, that is, it restricts the environment
no more and no less than is necessary for the component
to satisfy the property. In [5] and [2], a learning algorithm
is used to compute assumptions in an incremental fashion
in the context of simple and symmetric assume-guarantee
rules, respectively.

3. ASSUME-GUARANTEE TESTING
This section describes our methodology for using the arti-
facts of the design-level analysis, i.e. models, properties and
generated assumptions, for testing the implementation of a
software system. We assume a top-down software develop-
ment process, where one creates and debugs design models,
which are then used to guide the development of source code,
possibly by (semi-) automatic code synthesis.

Our approach is illustrated by Figure 1. Consider a sys-
tem that consists of two (finite-state) design models M1 and
M2, and a global safety property P . Assume that the prop-
erty holds at the design level (if the property does not hold,
we use the feedback provided by the verification framework
to correct the models until the property is achieved). The
assume-guarantee framework that is used to check that the
property holds will also generate an assumption A that is
strong enough for M1 to satisfy P but weak enough to be
discharged by M2 (i.e. 〈A〉 M1 〈P 〉 and 〈true〉 M2 〈A〉 both
hold), as described in Section 2.

Once the property is established at the design level, we need
to check if the property holds at the implementation level,
i.e. if C1 ‖ C2 |= P . A close correspondence is assumed be-
tween the design-level components and the actual software
implementations1, e.g. components C1 and C2 implement
M1 and M2, respectively, in Figure 1. We propose assume-
guarantee testing as a way of checking C1 ‖ C2 |= P . This
consists of producing test traces by each of the two com-
ponents, and checking these traces against the respective
assume-guarantee premises applied at the design level. If
each of the checks succeeds, then we are guaranteed that
the composition of the traces satisfies the property P .

We illustrate assume-guarantee testing through a simple ex-
ample. Consider a communication channel that has two
components, designs M1 and M2 and corresponding code
C1 and C2 (see Figure 2). Property P describes all legal
executions of the channel in terms of events in, out; it es-
sentially states that trace < out, in > is not allowed, since
this trace is the only P trace that is missing from P . Fig-
ure 2 also shows the assumption A that is generated dur-
ing the design-level analysis of M1 ‖ M2 (see Section 2).
Note that, although M1 ‖ M2 |= P , C1 ‖ C2 violates the
property. Figure 3 (left) shows two traces t1 and t2, ob-

1The software architecture of a system may not always pro-
vide the best decomposition for verification; however, for
the NASA systems that we have studied, the architectural
decomposition lends itself well to our automated assume-
guarantee framework.

Figure 1: Design and code level analysis

Figure 2: Assume-guarantee testing

tained from components C1 and C2, respectively. Checking
〈true〉 t2 〈A〉 during assume-guarantee testing will detect
the fact that t2 violates the assumption A and will thus un-
cover the problem with the implementation. Assume now
that assume-guarantee testing is not used, but the assem-
bled system is tested instead (we call the latter monolithic
testing). The system might first produce the first two traces
illustrated in Figure 3 (right). These traces satisfy the prop-
erty, which could lead developers to mistakenly believe that
the system is correct. This belief could even be supported
by the achievement of some testing coverage criterion, as
discussed later in this section.

In summary, the contribution of assume-guarantee testing
is that we can obtain results on all interleavings of two in-
dividual component traces simply by checking each against
the appropriate assume-guarantee premise. In the context
of our example, checking t1 and t2 corresponds to checking
all four traces illustrated in Figure 3 (right).

While our example illustrates the benefits of assume-guarantee
reasoning for unit testing, similar benefits apply to whole-
system testing. When the system is assembled, we use
assume-guarantee testing to conduct analysis that can effi-
ciently predict, based on correct system runs, violations by
alternative system runs. Both flavors of assume-guarantee
testing are discussed in more detail below.

3.1 Assume-Guarantee Component Testing
The first step in assume-guarantee testing involves the im-
plementation of 1) UA for C1, where UA encodes C1’s uni-
versal environment restricted by assumption A, and 2) the
universal environment U for C2. The universal environment
for a component may exercise any service that the compo-
nent provides in any order, and may provide or refuse any
service that the component requires. Subsequently, traces
are obtained by executing each component in its designated
environment. More specifically, a set of traces T1 is ob-
tained by executing C1 in UA several times and for a variety
of test inputs, and similarly T2 is obtained by executing C2

in U . Assume-guarantee testing is then performed for these

Figure 3: Discovering bugs with fewer tests

traces. Each trace t1 ∈ T1 is checked against P , and each
trace t2 ∈ T2 is checked against A. If either of these checks
fail (as in Figure 3), this is an indication that there is an in-
compatibility between the models and the implementations,
and the implementation or the model (or both) should be
corrected. If all these tests succeed, then we know by the
assume-guarantee rule that [t1]||[t2] |= P , for all t1 ∈ T1 and
t2 ∈ T2.

An advantage of this approach is that system correctness
can be established through local tests of components. Such
tests can be performed as soon as each component becomes
“code complete”, and before other components have been
implemented, or assembled together to form an executable
system. A secondary advantage of this approach is that
it ameliorates the problem of choosing appropriate testing
environments for components in isolation. This is a diffi-
cult problem in general, as finding an environment that is
both general enough to fully exercise the component under
testing and specific enough to avoid many false positives is
usually a time-consuming iterative process. Here, this prob-
lem is reduced to that of correctly implementing UA and
U . Note that alternatively, one may wish to check preser-
vation of properties by checking directly that each imple-
mented component refines its model. In our experience, for
well designed systems, the interfaces between components
are small, and the assumptions that we generate are much
smaller than the component models. Therefore, checking
the assumptions can be done more efficiently. Finally, note
that, when checking components in isolation, one has more
control over the component interface (since it is exercised
directly rather than through some other component). As a
result, it is both easier to reproduce problematic behavior,
and to exercise more traces for constructing sets T1 and T2.

Coverage. Unlike model checking, testing is not an ex-
haustive verification technique. As a result, it is possible for
defects to escape despite testing. For this reason, the no-
tion of coverage has traditionally been associated with the
technique. Coverage criteria dictate how much testing is
“enough” testing. A typical coverage criterion that works
on the structure of the code is “node” coverage, which re-
quires that the tests performed cover all nodes in the control
flow graph of the implementation of a system. Assume that
in our example our coverage criterion is node coverage for C1

and C2. Then t1 and t2 in Figure 3 (left) together achieve
100% coverage. Similarly, the first trace of the assembled
system in Figure 3 (right) achieves 100% node coverage. It is
therefore obvious that assume-guarantee testing has the po-

Figure 4: Predictive analysis

tential of checking more behaviors of the system even when
it achieves the same amount of coverage. This example also
reflects the fact that traditional coverage criteria are often
not appropriate for concurrent or component-based systems,
which is an area of active research. One could also measure
coverage by the number of behaviors or paths through the
system that are exercised. In this case, assume-guarantee
testing has the potential of achieving the same coverage as
monolithic testing with fewer tests.

Discussion. As stated above, our hope is that by checking
individual traces of components, we essentially cover mul-
tiple traces of the assembled system. Unfortunately, this is
not always true, due to the problem of incompatible traces,
which are traces that do not execute the same shared events
in the same order. These traces are from different execution
paths, and thus cannot be composed to get useful knowl-
edge about the system (they give the empty trace when
composed.) For example, suppose that the first event in
t1 is a function call on the procedure foo in C1, while the
first event in t2 is a function call on the procedure bar in C2;
these traces executed on different paths and are incompat-
ible. Thus, we face the question of producing compatible
traces during component testing. However, since multiple
traces are produced when constructing sets T1 and T2, we
believe that enough compatible traces will typically exist in
the cross-product of the two sets. One potential approach
would be to use the component models as a coverage metric
when generating traces in T1 and T2, and require that each
set of traces cover certain sequences of shared events in the
models.

3.2 Predictive Analysis for Component Assem-
blies

We may also use assume-guarantee testing to achieve pre-
dictive analysis of component assemblies. Assume-guarantee
testing for predictive analysis has the following steps:

• Obtain a system trace t (by running C1||C2).

• Project the trace on the alphabets of each component;
obtain t1 = t�αC1 and t2 = t�αC2.

• Use the design level assumption to study the compo-
sition of the projections; i.e. check that 〈A〉 [t1] 〈P 〉
and 〈true〉 [t2] 〈A〉 hold, using model checking.

The approach is illustrated in Figure 4: on the right, we
show a trace t of C1||C2 that does not violate the property.
On the left, we show the projections t1 and t2. Note that
〈true〉 [t2] 〈A〉 does not hold, hence from a single “good”
trace we have been able to predict that C1||C2 violates the
property. Notice that using the design level assumption to
analyze the projections is more efficient than composing the
projections and checking that the composition satisfies the
property as is performed by other predictive analysis tech-
niques — this is especially so when the design level assump-
tions are small.

An alternative approach is to generate the assumption di-
rectly from the projected trace t1, and then test that t2 sat-
isfies this assumption. This approach is a way to do assume-
guarantee predictive testing in a system where there are no
design-level models. However, we have to experiment to see
if it is practical to generate a new assumption for each trace.

Discussion. We would like to use assume-guarantee pre-
dictive testing as a means of efficiently generating system
coverage. This technique does not suffer from incompatible
traces, as the two projected traces occur in the same sys-
tem trace and are thus guaranteed to be compatible. Of
course, when generating traces of the system, the benefits
of predictive analysis should ideally be taken into account.
For example, suppose that we obtain a trace t, projected
onto t1 and t2. By assume-guarantee testing we know that
[t1]||[t2] |= P . In obtaining further traces, we would like
to avoid traces in [t1]||[t2] since these are covered by our
assume-guarantee checking of t1 and t2. Again, we can con-
sider using the design-level model as a coverage metric; two
traces that have different sequences of shared events through
the model will project onto different traces. We could also
use test input generation techniques for this purpose. We
need to investigate this direction further.

4. EXPERIENCE
Our case study is the planetary rover controller K9, and
in particular its executive subsystem, developed at NASA
Ames Research Center. The study has been performed in
the context of an ongoing collaboration with the developers
of the rover, where verification was performed during devel-
opment to increase the quality of the design and implemen-
tation of the system. Below we describe the rover executive,
our design-level analysis, how we used the assumptions gen-
erated by this analysis to conduct assume-guarantee testing,
and results of this testing.

4.1 K9 Rover Executive Subsystem
The executive sub-system commands the rover through the
use of high-level plans, which it interprets and executes in
the context of the execution environment. The executive
monitors execution of plan actions and performs appropriate
responses and cleanup when execution fails.

The executive has been implemented as a multi-threaded
system (see Figure 5), made up of a main coordinating com-
ponent named Executive, components for monitoring tempo-
ral conditions ExecTimerChecker and state conditions Exec-
CondChecker - which is further decomposed into two threads
- and an ActionExecution thread that is responsible for is-
suing the commands (actions) to the rover. The commu-

Figure 5: The Executive of the K9 Mars Rover

nication between different components (threads) is made
through an EventQueue. The implementation has 35K lines
of C++ code and it uses the POSIX thread library.

4.2 Design-level Analysis
In previous work [9], we developed detailed design models
for the executive subsystem. We then checked these models
in an assume-guarantee manner for several properties speci-
fied by the developers. Model checking of the design models
uncovered a number of synchronization problems such as
deadlocks and data races, which we then fixed in collabo-
ration with the developers. After finishing this process, for
each property we had an assumption on one of the compo-
nents stating what behavior was needed of it for the property
to hold of the entire system.

4.3 Assume-guarantee Testing Framework
We have developed a framework that uses the assumptions
and properties built during the design level analysis for the
assume-guarantee testing of the executive implementation.
In order to apply assume-guarantee testing, we broke up the
implementation into two components, with the Executive
thread, the EventQueue and the ActionExecution thread on
one side (M1), and the ExecCondChecker thread and the
other threads on the other side (M2), as shown in Figure 5.

To test the components in isolation, we generated envi-
ronments that encode the design-level assumptions (as de-
scribed in Section 3). These environments provide stubs for
the methods called by the component that are implemented
by other components and drive the execution of a compo-
nent by calling methods that the component provides to its
environment. To make function calls on the component, we
provided dummy values of irrelevant arguments (while en-
suring that these dummy values did not cause any loss of
relevant information).

Essentially, each environment has been implemented as a
thread running a state machine (i.e. the respective design
level assumption) that executes in an infinite loop, which
makes random choices to perform an “active” event that is
enabled in the current state, together with a set of func-
tions that comprise the ”passive” events of the assumption
(these functions also cause the state machine to make the
appropriate transition when called by the component under

Figure 6: Testing Environment

test).

The framework uses the Eagle run-time monitoring frame-
work [3], to check that the components conform with the
assume-guarantee pairs. Eagle is an advanced testing frame-
work that provides means for constructing test oracles that
examine the internal computational status of the analyzed
system. For run-time monitoring, a program is instrumented
to emit events which are then checked by Eagle to see whether
the current trace conforms to formalized requirements, stated
as temporal logic assertions or finite-state automata.

For our experiments, we instrumented (by hand) the code
of the executive components, to emit events that appear in
the design level assumptions and properties. We translated
(automatically) these assumptions and properties into Eagle
monitors.

Note that in order to run the executive system (or its com-
ponents), we need to provide an input plan and an envi-
ronment simulating the actual rover hardware. For our as-
sume guarantee testing experiments, the hardware environ-
ment was stubbed out. For plan input generation, we built
upon our previous work, which combines model checking and
symbolic execution for specification based test input gener-
ation [20]. To generate test input plans, we encoded the
plan language grammar as a nondeterministic specification.
Running model checking on this model generates hundreds
of input plans in a few seconds.

We have integrated all the above techniques to perform
assume-guarantee testing on the executive (see Figure 6).
We first instrument the code and generate Eagle monitors
encoding design-level assumptions and properties. The frame-
work generates a set of test input plans, a script runs the
executive on each plan and it calls Eagle to monitor the gen-
erated run-time traces. The user can choose to perform a
whole-program (monolithic) analysis or to perform assume-
guarantee reasoning.

4.4 Results
We ran several experiments (according to different input
plans). For one property, we found a discrepancy between
the implementation and the models. The property (P) states
that the ExecCondChecker should not push events onto the
EventQueue unless the Executive has sent the ExecCond-
Checker conditions to check. The design-level assumption
(A) on the ExecCondChecker states that the property will

hold as long as the ExecCondChecker sets a flag variable to 1
before pushing events, since these assignments only happen
in response to the Executive sending conditions.

To check this property, we generated an environment that
drives component C1 (which contains the Executive) accord-
ing to assumption A. We instrumented C1 to emit relevant
events and we ran Eagle to check if the generated traces
conform to property P .

We also generated a universal environment for component
C2 (which contains the ExecCondChecker); we instrumented
C2 to emit events and we used Eagle to check if the gener-
ated traces conform to A. In fact, component C2 did not
conform with the assumption. The obtained counterexam-
ple traces exhibit a scenario where the ExecCondChecker
pushes events onto the EventQueue without first setting the
flag variable to 1. This turned out to be due to the fact
that an input plan can contain null conditions. Instead of
putting these in the condition list for monitoring, the Ex-
ecCondChecker immediately pushes an event to the queue.
This behavior exposed an inconsistency between the mod-
els and the implementation, which we corrected. Monolithic
model-checking of the property P would not have uncovered
this inconsistency.

5. RELATED WORK
Assume-guarantee reasoning leverages the observation that
large systems are built from components, which can be an-
alyzed in isolation, to improve performance. Formal tech-
niques and tools for support of component-based design and
verification are gaining prominence, see for example [1, 6,
8]. All these approaches use some form of environment as-
sumptions (either implicit or explicit), to reason about com-
ponents in isolation.

In previous work [10] we developed a technique for using
design-level assumptions for compositional analysis of source
code. In [10] we used model checking (Java PathFinder [19]),
while the focus here is on testing. Model checking (the
VeriSoft state-less model checker [11]) is also used in [7] for
performing assume-guarantee verification for C/C++ com-
ponents. However, the burden of generating assumptions is
on the user.

Our work is related to specification-based testing. There is
a lot of work in this area. For example, in [13, 17], for-
mal specifications are used for the generation of test inputs

and oracles. Test inputs are generated from constraints (or
assumptions) on the environment of a software component,
while test oracles are generated from the guarantees of the
component under test. None of the above described ap-
proaches address predictive analysis.

Predictive runtime analysis of multithreaded programs has
been explored by Sen et al. [18]. Their work uses a partial
ordering on events to extract alternative interleavings that
are consistent with the observed interleaving; states from
these interleavings form a lattice that is similar to our com-
position of projected traces. However, to verify that no bad
state exists in this lattice, they construct the lattice level
by level, while we propose using assume-guarantee reason-
ing to give similar guarantees without having to explore the
composition of the projected traces.

Another related approach [15] uses assume-guarantee rea-
soning to combine runtime monitors. Unlike our work, which
aims at improving testing, the goal in [15] is to combine mon-
itoring for diverse features, such as memory management,
security and temporal properties, in a reliable way.

6. CONCLUSIONS AND FUTURE WORK
We have presented assume-guarantee testing, an approach
that improves traditional testing of component-based sys-
tems by predicting violations of system-level requirements
both during testing of individual components and during
system-level testing.

We have experimented with our approach in the verification
of a non-trivial NASA system and report promising results.
Although we have strong reasons to expect that this tech-
nique can significantly improve the state-of-the-art in test-
ing, it is a difficult task to quantify its benefits. One reason
is the lack of appropriate coverage criteria for concurrent
and component-based systems. Our plans for future work
include coming up with “component-based” testing cover-
age criteria, i.e. criteria which, given the decomposition of
global system properties into component properties, deter-
mine when individual components have been tested enough
to guarantee correctness of their assembly. One potential
approach is to use the models as a coverage metric, which is
something we wish to investigate in the future.

REFERENCES
[1] R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer,

S. K. Rajamani, and S. Tasiran. MOCHA: Modularity
in model checking. In Proc. of the Tenth Int. Conf. on
Comp.-Aided Verification (CAV), pages 521–525, June
28–July 2, 1998.

[2] H. Barringer, D. Giannakopoulou, and C. S.
Păsăreanu. Proof rules for automated compositional
verification through learning. In Int. Workshopon
Specification and Verification of Component-Based
Sys., Sept. 2003.

[3] H. Barringer, A. Goldberg, K. Havelund, and K. Sen.
Rule-based runtime verification. In Int. Conf.on
Verification, Model Checking and Abstract
Interpretation, pages 44–57, Jan. 2004.

[4] E. M. Clarke, D. E. Long, and K. L. McMillan.
Compositional model checking. In Proc. of the Fourth
Symp. on Logic in Comp. Sci., pages 353–362, June
1989.

[5] J. M. Cobleigh, D. Giannakopoulou, and C. S.
Păsăreanu. Learning assumptions for compositional
verification. In 9th International Conference for the
Construction and Analysis of Systems (TACAS 2003),
volume 2619 of LNCS, Warsaw, Poland, 2003.
Springer.

[6] L. de Alfaro and T. A. Henzinger. Interface automata.
In Proc. of the Eighth European Soft. Eng. Conf. held
jointly with the Ninth ACM SIGSOFT Symp. on the
Found. of Soft. Eng., pages 109–120, Sept. 2001.

[7] J. Dingel. Computer Assisted Assume Guarantee
Reasoning with VeriSoft. In International Conference
on Software Engineering, 2003.

[8] C. Flanagan, S. N. Freund, and S. Qadeer.
Thread-modular verification for shared-memory
programs. In Proc. of the Eleventh European Symp. on
Prog., pages 262–277, Apr. 2002.

[9] D. Giannakopoulou, C. S. Păsăreanu, and
H. Barringer. Assumption generation for software
component verification. In Proc. of the Seventeenth
IEEE Int. Conf. on Auto. Soft. Eng., Sept. 2002.

[10] D. Giannakopoulou, C. S. Păsăreanu, and J. M.
Cobleigh. Assume-guarantee verification of source
code with design-level assumptions. In Int. Conf. on
Soft. Eng., pages 211–220, May 2004.

[11] P. Godefroid. Model checking for programming
languages using VeriSoft. In Proc. of the 24th ACM
Symp. on Principles of Prog. Lang., pages 174–186,
Jan. 1997.

[12] O. Grumberg and D. E. Long. Model checking and
modular verification. In Proc. of the Second Int. Conf.
on Concurrency Theory, pages 250–265, Aug. 1991.

[13] L. J. Jagadeesan, A. A. Porter, C. Puchol, J. C.
Ramming, and L. G. Votta. Specification-based
testing of reactive software: Tools and experiments
(experience report). In International Conference on
Software Engineering, pages 525–535, 1997.

[14] C. B. Jones. Specification and design of (parallel)
programs. In R. Mason, editor, Information
Processing 83: Proceedings of the IFIP 9th World
Congress, pages 321–332. IFIP: North Holland, 1983.

[15] J. Levy, H. Saidi, and T. E. Uribe. Combining
monitors for run-time system verification. Electronic
Notes in Theoretical Computer Science, 70(4),
December 2002.

[16] A. Pnueli. In transition from global to modular
temporal reasoning about programs. In K. Apt, editor,
Logic and Models of Concurrent Systems, volume 13,
pages 123–144, New York, 1984. Springer-Verlag.

[17] P. Raymond, X. Nicollin, N. Halbwachs, and
D. Weber. Automatic testing of reactive systems. In
IEEE Real Time Systems Symposium (RTSS), 1998.

[18] K. Sen, G. Rosu, and G. Agha. Detecting errors in
multithreaded programs by generalized predictive
analysis of executions. In Formal Methods for Open
Object-Based Distributed Systems, pages 211–226,
2005.

[19] W. Visser, K. Havelund, G. Brat, and S.-J. Park.
Model checking programs. In Proc. of the Fifteenth
IEEE Int. Conf. on Auto. Soft. Eng., pages 3–12,
Sept. 2000.

[20] W. Visser, C. S. Păsăreanu, and S. Khurshid. Test
input generation with Java PathFinder. In Int. Symp.
on Soft. Testing and Analysis, pages 97–107, July
2004.

